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1. Phys. A Math. Gen. 24 (1991) 1785-1800. Printed in the UK 

Towards objectification of measurement in an orthodox but 
incomplete quantum mechanics 

Fedor Herbut 
Faculty of Physics, University of Belgrade, POB 550, 11001 Beograd, Yugoslavia 

Received 18 December 1990 

Abstract. The problem of objectification of measurement is investigated in orthodox quan- 
tum mechanics, that is assuming the validity of the Schrodinger equation (and the other 
postulates) for the composite object-plus-measuring-instrument system. It is argued that 
by giving physical meaning to basic entities, the positivist and the realist positions must 
be explicitly distinguished. I t  is shown that the objectification problem is satisfactorily 
solved within quantum mechanics for the positivist, but not for the realist. For the latter, 
a partially satisfactory solution is obtained by assuming that the quantum mechanical 
description of individual systems is incomplete and, by assuming funher, that the pointer 
observable has definite values prior to any measurement in any quantum state (a so-called 
beabiei. 

1. Introduction 

We call orthodox the approach to the theory of measurement in quantum mechanics 
(QM) that keeps the Schrodinger equation (or equivalently, a unitary evolution operator) 
as LllC "yr,a,,,,Lar l a w  GuLuL,,p'i>>,,,g LLlC LLllclacLlull "GIMIGSLI q(uar,ru,rr U",GCL \Ju"ayoLGrrr 

1) and the measuring instrument (MI,  subsystem 2) along with the rest of the known 
postulates of QM (as a counterexample, see, for example, Ghirardi er a[ 1986). 

In recent expositions of the orthodox approach (Busch 1991, Beltrametti er aI1990), 
measurement is viewed as consisting of three successive phases. First comes the 
preparation of the object in the (arbitrarily chosen) quantum state l$dl and the MI in 

?hex fe!!o,s the dynarAica! e..o!fition of the co~.posi!e ~ d e m  csll~rl th- r . -  nre 

measurement, that leads to a final state 14),2; and, finally, there is the objectifcation 
of measurement. 

.. .L^ Î :--, 1 L" .... ̂ "- A _ _ _  -L:.."* ,"..!-"..-&-- 

To outline the hare essentials of premeasurement, let 

A , = ~ a k P \ * '  k ( k f k ' = 2 a k # a , . ; ~ P ~ ) = l )  k (1) 

be the measured observabie of the quantum object written as a Hermitian operator in 
spectral form. (Exact measurement is possible only if the measured observable has a 
purely discrete spectrum; see von Neumann (1955 p 222).) Further let 

B2 = 1 k b,@'+ b,Qio'+ B; ( k # k ' ~ b , # b , . # b , ; ( ~ Q : L ' + Q : n ) ) R ; = O )  ( 2 )  

be the so-called pointer observable of the M I  (in partially spectral form). We use the 
terms 'pointer observable' and 'pointer positions' ( b ,  in a symbolical meaning) to cover 
a wide range of cases. The co-indexing in (1) and (2) is necessary for the interpretation 
of bk as meaning that the result a, of A, has been obtained. As to the initial state 
1x0)~. one has 

B ~ Y o ) ~  = ~ o I x o ) ~ .  (3 )  
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Further let 

(4) 
I,,, ) - z  1/2 -1 /2p(k)  

0 1 -  kwk ( w k  L 1d'O)l) 

be the decomposition of the initial state vector of the quantum object according to 
( l ) ,  into orthonormal vectors, where 

V k :  wk (+olp\ki l#o) i  IIPIk'I$Lo)il12 ( 5 )  

is the probability of ak in I I ) ~ ) ~ .  

value a,, that is if 
To define premeasurement, we require that if the initial state I+hk')I bas a sharp 

( 6 )  Ail $hk')i = ah I J/h"), 

~ ~ m ~ ; x m l m n t l u  \"y".....-.l ..,,.. \.+," , ;f/ ,f ,!L)lp("l.f,!k~\ I ,.+," , I  = 11 .,,~..'..~..'L..'Y.I~"LI,YI thpn+hPfinOl d o t a  l"(*))l,=f:heco-posi:;~s;eiii 
at the end of premeasurement evolution has a sharp pointer position: 

( 1  @ B~)I$'")u = b k / $ ' l r ' ) t 2 .  (7) 

It is of immense practical importance to achieve some permanence (in time) for 
relat.ion (7): one wants to be able to avail oneself of the result for some time to follow. 
This is usually achieved by some process of macroscopic amplification involving 
irreversibility. 

Denoting the composite-system unitary evolution operator by UI2, one has so far 

u,21$~k '~ , Ixu)2= (8) 

Since every normalized k-component ( w;"*P\~)I$,,),) of the general state I$& (see 
(4jj satisfies (6j, and since ihe evoiuiion operator is iinear, (4 j  and (Sj  impiy 

~ 1 2 1 J I O ) l l X 0 ) 2  = ~ : n w Y 2  u,2(w;1~2Plx' I  +O)llX0)2) 

= x k w y * l $ ( y 1 2 =  I$),,. (9) 

and (9), it is easy to see that the pr&abi!i!y distribntion imp!ied by I$& %with :e+.ect 
In view of the fact that the same expansion coefficients wLI2 appear both in (4) 

to the characteristic values of A , ,  is the same as that entailed by the final state 
regarding the pointer positions b,. Hence, (7) (with (8) and ( 6 ) )  defines those U,,  that 
give measurement (providing the pointer observable allows objectification). For an 
equivalent, but more detailed, premeasurement theory see Beltrametti et al (1990) or 
Mittelstaedt (1991). 

Objecrification depends on satisfying two requirements (cf Busch 1991): 
(i) the relevant statistical state of object+ M I  at the end of premeasurement must 

be a mixture of substates that correspond to definite pointer positions; 
(ii) there must be given a statistical mechanism leading from the final state to a 

definite-pointer-position substate in the mixture for every individual system in the final 
premeasurement state. 

The orthodox theory at issue is known to fail in objectification (Mittelstaedt 1991, 
DEspagnat 1976, Fine 1970) unless the idea of completeness of QM is given up (as 
done in section 7). One should bear in mind that, while it is indisputable that QM does 
give a complete description of quantum mechanical ensembles, the notion that it also 
describes in a complete way the individual systems is no more than a matter of faith 
(as in the well known Copenhagen position). 
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Any attempt at solving the objectification problem requires one to give physical 
meaning to some basic entities of the quantum mechanical formalism. Thorough study 
reveals that this actually cannot be done unless one takes a stand in the well known 
positivist-realist dispute. Thus, objectification of quantum measurement, that has much 
bearing on foundation (or interpretation) of OM, cannot, in fact, be completely 
decoupled from some basic philosophy. The previously mentioned no-go results are 
actually obtained from the position of a realist. 

Of the numerous ways in which quantum measurement is treated differently than 
in the orthodox approach at issue (cf Sudbery 1986), the one that is perhaps the most 
relevant for this study is the Copenhagen instrumentalist approach (Stapp 1972). It 
treats measurement in terms of the laboratory instruments (described by classical 
physics), but it does not allow one to apply QM to the instruments. It is not so well 
known that there exists a broader-minded positivistic position that does allow an 
orthodox quantum mechanical theory of measurement and that does achieve objec- 
tification without utilizing the assumption of incompleteness of QM. It will be presented 
in sections 2-6 and critically discussed in the last section. Nevertheless, in this investiga- 
tion, the positivist solution is only a springboard for further study. 

The basic aim is to attempt to make a resolute step towards a genuine realist’s 
objectification of measurement (at the expense of the assumption of incompleteness 
of QM). This is done in sections 7 and 8. 

For a methodological reason, we keep philosophy out of our quantum mechanical 
arguments as far as possible. Hence, the positivist-realist distinction is resumed no 
sooner than in the last section. 

A shortened version of this work (without proofs) is included in Herbut (1991). 

2. Bohr’s idea of macroscopic complementarity 

‘In his most careful writing’, says Shimony in his lucid discussion (1963 p 7691, ‘Bohr 
states subtle qualifications concerning states of macroscopic objects.’ Then Shimony 
gives an example citing Bohr (1961 p 50): 

‘The main point here is the distinction between the objects under investigation 
and the measuring instruments which serve to define, in classical terms, the condi- 
tions under which the phenomena appear. Incidentally, we remark that, for the 
illustration of the preceding considerations, it is not relevant that experiments 
involving an accurate control of the momentum or energy transfer from atomic 
particles to heavy bodies like diaphragms and shutters would be very difficult to 
perform, if practicable at all. It is only decisive that, in contrast to the proper 
measuring instruments, these bodies together with the particles would constitute 
the system to which the quantum mechanical formalism has to be applied.’ 
Shimony (1963 p 770) proceeds by giving his understanding of Bohr’s idea: 

Bohr is saying that from one point of view the apparatus is described classically 
and from another, mutually exclusioe point of view (my italics), it is described 
quantum mechanically. In other words, he is applying the principle of complemen- 
tarity, which was originally formulated for microscopical phenomena, to a macro- 
scopic piece of apparatus. 

We shall call this idea of Bohr his macroscopic complementarity. We propose to 
view it as a basic principle of QM. Bohr’s previously quoted text may be considered 
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to give a rough definition of it. It is sufficient for the realization of the beginning of 
our programme. 

Summing up Bohr’s idea, we can say that the principle of macroscopic complemen- 
tarity offers two mutually exclusive points of view or versions. 

(i) In the object version the M I  is viewed as a quantum object, just like any 
microscopic system. Then there is no restriction on the measurability of composite- 
system observables. 

(ii) In the instrument version, we by definition restrict the composite-system observ- 
ables to such as are relevant for having the measurement results at one’s disposal. We 
elaborate this in section 4. 

3. The concept of the cut and explanation of the role of classical apparatuses in 
conventional quantum mechanics 

To begin with, we give a precise definition of the cut in conventional QM. Every 
quantum mechanical description by a quantum state has a (most often tacit) pre- 
requisite: a division of the world into two parts, one that is the object of quantum 
mechanical description (briefly object or O), and one that is omitted. In the latter there 
is somehow stored the information on  how to prepare laboratory ensembles of quantum 
objects in the quantum state at issue. Therefore, the second part is called the subject 
( S ) .  (For more on this, see Stapp’s 1972 presentation on instrumentalism.) The imagined 
line of division between object and subject is called the cut. For instance, the cut 
(symbolically ‘/’) that corresponds t o  the final state of premeasurement evolution 
(cf (9)) can be written as follows 

O / S = ( l + 2 ) / 3 .  (10) 

Here the preparators (of both the quantum object and the M I )  and the rest of the world 
are denoted as subsystem 3. They could equally well be subsystem 0, and one could 
write: S/O = 0/( 1 + 2). 

Now we discuss the role of classical apparatuses in conventional QM by answering, 
one by one, questions on the reason for the usual (textbook) statements. 

3.1. How d o  the preparator and the M I  ‘determine’ the quantum experiment? 

In this study we confine ourselves to preparators that are M I .  (We shall extend the 
orthodox theory to so-called filters as preparators elsewhere.) We measure selectively 
a non-degenerate value ak of a quantum-object observable A, in a first-kind (that is 
predictive) way. As a result, the quantum object is brought into the unique (up to a 
phase factor) state vector I$,)I = lak) ,  (cf section 1). 

Preparation is the first half of a quantum mechanical experiment. Measurement is 
its second half. The same procedure is essentially repeated in it (we even use the same 
notation though now A, and E ,  are quite independent new observables): 

defined by (9). Then, the new pointer 
observable E ,  of the M I  determines the new collapsed state pi*’ of the quantum object 
via its position bk (assuming the objectification is valid, see (21)). 

One should note that the determining role of both the preparator and the subsequent 
M I  comes from their role as instruments (in contrast to their possible role as quantum 
objects according to the principle of macroscopic complementarity). 

The initial state I J I ~ ) , I X ~ ) ~  evolves into 
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3.2. What does i t  mean that object and subject are 'inextricably tied up' in quantum 
observation? 

At the end of the premeasurement evolution we have 

l$),2=xkw"k)),2 

(cf (9)), which in the object version of the M I  is relevant in all its details. This 'ties 
up' the two subsystems inextricably through quantum correlations. Since object and 
MI no longer interact, we have actually distant correlations between the two subsystems 
(cf, for example, VujiSC and Herbut 1988). 

3.3. What does it mean that there is no sharp line of division beween object and subject 
in quantum observation? 

As previously explained, macroscopic complementarity enables us to define the cut, 
for example O / S =  1/ (2+3) ,  corresponding to the instrument version (in which the MI 

is part of the subject). This is a perfectly sharp definition of the cut, hut it is not unique. 
In the object version of the MI we have the cut Of S = (1  + 2)/3. Thus, on account of 
macroscopic complementarity, the cut is displaceable, and hence the 'line of division 
between object and subject' that it stands for is not sharply defined. 

It has, no doubt, become clear in these explanations of the role of macroscopic 
apparatuses in conventional QM that the proposed enrichment of standard QM by the 
macroscopic complementarity principle also implies an enrichment of the concept of 
the cut. The MI with its pointer observable and, as a rule, with a definite pointer 
position, is an important part of the subject, and hence it can no longer he completely 
omitted (as is usually done with the entire subject in conventional QM). The rest of 
the world, that plays a passive role, can be omitted just as in conventional QM. In 
other words, subsystem 3 in (IO) can be restricted to the MI.  

To offer an explanation why the M I  is described by classical physics in conventional 
QM, we need a more elaborate theory of statistical states in the instrument version. 
But, as a prerequisite, we must propose a precise form of macroscopic complementarity. 

4. Precise form of the macroscopic complementarity principle 

How we have the results in the final state in premeasurement evolution, at our 
disposal is an important question. From the operational point of view, there is no 
other way of control than by 'looking at the pointer position', that is by measuring B, 
(cf (2)) simultaneously with an observable C ,  on the quantum object. 

To express this in precise terms, we introduce coincidence observables C ,  A B, as 
composite-system observables, the characteristic projectors of which are, by definition, 
S',"'@Q$k', where Si"' are the characteristic projectors of 

c, = x.c,si"' (11) 

and the 'characteristic values' that correspond to these composite-system projectors 
are the pairs ( cn ,  bk) ,  where c. are the characteristic values of C ,  corresponding to 
Si"' (in the spectral form (11)). 

that is relevant for the control of the results 
of the first measurement is the measurement of C,nB,, where C ,  is an arbitrary 
observable of the quantum object, and B, is the pointer Observable. One can measure 

The subsequent measurement on 
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a more general coincidence observable C, nf (B,) ,  where f ( B2)  is a Hermitian operator 
that is a function of B2,  for the same purpose. Then the observables C ,  A 1 (meaning 
that one does not 'look' at the pointer position) are also included. The purpose in 
question would even allow utilizing observables of the form g ( C , ,  B,), where g is any 
functional dependence giving a Hermitian operator. 

We saw (at the end of section 2) that all that remained to be specified in the concept 
of macroscopic complementarity is the precise set of composite-system observables to 
which one, by definition, restricts oneself when the M I  is viewed in the instrument 
version. We denote this set by O,,, and we define it as follows. 

O,,-{C,nf(B2):CI and f any}. (12) 
An observable C, n f ( 8,) with f non-singular is, from the point of view of measurement, 
the same as C, A B2.  Iff is singular, then the physical meaning off ( B 2 )  is an imprecise 
measurement of B,. 

5. How does the instrument version of macroscopic complementarity imply classical 
description of apparatuses? 

In the instrument version of the M I  there can exist two distinct statistical operators p, ,  
and pi2  for the composite qUantUm-ObjeCt-plus-MI system that cannot be distinguished 
by observables of the form C ,  n f ( B 2 ) ,  that is for which 

(13) 
for any C, and every value of k Hence, there is redundancy in the set S,, of all 
statistical operators of the composite system. One wonders what is the meaning of this. 

5.1. Jauch's classes of statistical operators 

Jauch (1964, 1968) showed that any restriction of the set of all Hermitian operators 
to some given subset 0 actually changes our statistical state concept as follows. 

Let S be the set of all statistical operators for the system. One says that p, p ' ~  S 
are equivalent with respect to 0, that is p - p', if V C  E 0: Tr pC = Tr p'C.  

Then the quotient set S/ -, that is the set of all equivalence classes of statistical 
operators, has the structure of a u-convex set, that is that of a set of statistical states, 
in a natural way: 

Tr,, p l 2 ( G 0  Q?') = Tr,, PL(C,O Q!") 

If 

c,,c, ,..., € S f -  and 

then by X:,w,C, E S/ - (the so-called convex combination or u-convex combination 
of elements, the latter if there is an infinite number of terms) one means the class 
obtainable through arbitrary representatives as follows. One takes p ' " ~  C , ,  p'2'E 
C,, . . . , one defines X.w,,p'"', and then X.w,C, is by definition the class to which 
X,w.p'"' belongs. 

The set of observables O,, defined by (12) does not consist of Hermitian operators, 
and hence it cannot be made use of directly for the evaluation of the corresponding 
Jauch classes. It is easy to see that the corresponding set of Hermitian operators is 

w , > o ,  w , > o , .  . . , X,,W" = 1 

o ~ , - { C , @ ~ ~ * ' : C ~  any, V k }  (14) 

where Qik' are the characteristic projectors of the pointer observable B, 
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In view of (14), two composite-system statistical operators P , ~  and pi2 are equivalent 
or p12-p;2, that is they belong to the same Jauch class, if and only if they satisfy (13). 

There is no redundancy in the set of Jauch classes. However for any evaluation 
one must take an arbitrary element of the class in question, and therefore working 
with the classes is actually not more practical than working with the statistical operators 
themselves. One wonders if one can do better than that. 

5.2. Hybrid form as canonical form of the statistical states 

With the purpose of replacing the Jauch classes of statistical operators of the composite 
system with single entities leaving the u-convex structure of the quotient set intact, 
Herbut (1986b) investigated what properties of p,2 and p12 would make them equivalent 
(in the sense of (13 ) ) .  

It was proved (see theorem 1 and corollary 5 of Herbut 1986b) that p12 and p i 2  
belong to the same Jauch class if and only if both of the following two sets of conditions 
are satisfied: 

Vk: wk =Tr,, p12(l@Qik1) 

= w ;  = Tr,, p;,(lOQ:”’) (15) 
p ( k l -  - 1  Vk, W , > O ,  w;>o: I w k  TI2 P I ~ ( ~ O Q $ ~ ’ )  

(16) 

One should remember that k enumerates the pointer positions bk (or equivalently, 
the quantum events Q:*’ that mean taking u p  bk). Thus, these necessary and sufficient 
conditions read: P , ~ -  pi2 if and oniy if aii pointer positions are equaiiy probable in 
p,2 and in pi2,  and for each k value for which wk = w; > 0, the corresponding conditional 
states of the quantum object are equal. (As to the concept of the conditional state pi”, 
it was investigated in full generality in Herbut 1986b, cf ( 5 )  there.) 

In view of this condition, the logical question arose as to whether it was possible 
to redefine the Jauch classes in terms of the relevant entities: 

M ={(p$k), w , ) : V k }  (17) 

putting formally pik’= 0 whenever wk = 0. 
It turned out that it was possible (see theorem 4 in Herbut 1986b). The entities M 

were called hybrid states because they are half quantum mechanical and half classical 
discrete. They form in a natural way a u-convex set (1986b, section 5 )  isomorphic to 
that of the Jauch classes of statistical operators. This proceeds as follows. Let 

- p t ( k l =  wi- l  - I Tr, ~ i ~ ( 1 0 0 : ~ ’ ) .  

M , = ( ( P \ ~ , ~ ’ ,  wp’):Vk} U. > 0 q =  1,2, .  . . xqup = 1. 

Further let M defined by (17) be such that M =I,u,,M,. Then 

V k :  Wk = 0,Wip’ (18a) 

Vk, Wk > 0: pix’ = 1 U,( W P ’ l  Wk)py) .  (186) 

We have introduced the hybrid state M given by (17) in terms of entities evaluated 
from an a priori given statistical operator pI2 by means of formulae (15) and (16). The 
set 1, of all hybrid states M thus obtained (from all possible p I 2 )  contains all possible 

4 

’I 
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discrete probability distributions wk (see (17)) and, independently, all possible statis- 
tical operators (written as pix’) in the state space of the quantum object (observing 
p y ’ = O  when wk =O). This was previously proved (see theorem 4 in Herbut 1986b). 

Finally, we come to the question as to whether working with the hybrid state M 
is more practical than with the Jauch classes. The hybrid states are of interest to us in 
the instrument version of macroscopic complementarity. Hence, our most general 
composite-system observahles are of the form C,OQP’ (cf (14)). The expectation 
value is 

where p12 is an arbitrary element from the Jauch class that corresponds to the hybrid 
state M given by (17). It is clear from (19) that the required expectation value is easily 
evaluated from M ,  and that it is performed in terms of the canonical entities wk and 
p\” that are common to all elements of the Jauch class in question. Hence, one cannot, 
in general, evaluate (C,OQ$k’)M in a more simple way than by means of (19). 

5.3. Why can the apparatuses be described by classical physics? 

It will require a more elaborate argument to show that the classical discrete probabilities 
{ w k  : V k }  contained in the hybrid states M (cf (17)) lead, in a more or less straightfor- 
ward way, to a classical statistical description of the MI.  Here we want only to stress 
that the former represent the basic step from a quantum mechanical towards a classical 
description and that they emerge naturally, as a consequence of having given a precise 
definition of the instrument version of macroscopic complementarity in terms of the 
set of coincidence ohservahles 0,, (cf (12)). 

Since the pointer observable B, plays a key role in O,,, it is, in the long run, one 
of the basic concepts responsible for the appearance of classical description. The 
important question arises as to how one should select the pointer observable when a 
quantum system that we call a n  MI is given. There are three mutually unconnected 
partial answers. 

(i) The pointer observable should be a macroscopic variable in the sense of von 
Neumann (1955, section V.4), that is one from a special set of mutually compatible 
observables. 

(ii) The observable B, should be an effective superselection observable, that is due 
to the vast number of atoms in a macroscopic environment of the pointer (or rather 
of the relevant part of the M I  carrying the pointer). This point of view was investigated, 
for example, in the articles of Zurek (1982), Joos and Zeh (1985). 

(iii) The pointer observable should be a heable (Bell 1987). This is actually a 
hidden-variable approach. It will be elaborated to some extent later. 

A further contribution to a solution of the important problem of how classical 
physics follows from QM is to be obtained when more light is shed on the mutual 
relationships between these three views about a classical variable like the pointer 
observable. 

Finally, it should be pointed out that the natural appearance of the classical 
description on the subject side of the cut (cf section 3) may also be significant for the 
quantum mechanical theory of some molecular systems. Namely, in some cases sym- 
metry breaking, for example breaking of parity in molecules with definite chirality, 
can be explained in no other way than by the influence of classical surroundings (Cf 
Primas 1983). 
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6. Objectification in terms of the hybrid states 

One may wonder if the hybrid states are decomposable into definite-pointer-position 
states. Prior to an answer, what the latter means in the hybrid-state formalism must 
be clarified. 

Lemma. A hybrid state is a statistical state with a definite pointer position bkn if and 
only if it has the form 

M ( ~ J  = { ( s k , h o P I ,  ak,h,):Vk} (7.0) 

where p,  is a statistical operator for the quantum object. 

Proof: Since the characteristic projector (lOQ$*') of ( lOB,)  belongs to 0; (cf (14)), 
we can immediately evaluate with the help of (19) the probability of this quantum 
event in an arbitrary hybrid state M, given by (17). We thus obtain wk (as given in 
(17)) as our result. Since a definite-b hybrid state by definition predicts one of the 
mentioned characteristic events say (1 0 Qik0)), with certainty, M is such a state if and 
only if wk = S k k .  This completes the proof in view of the fact that for all values of k 
for which wk = O  in its general form (17), zero takes the place of the corresponding 
statisticai operator. U 

One should note that the definite-pointer-position hybrid states MChaJ given by (20) 
incorporate the cut (cf section 3) and contain the relevant information on the pointer 
position on the subject side, which here is the classical half of M"0'. 

Now we can answer the previous question about a possible relevant decomposition. 

7'beorem 1. Let M be an arbitrary hybrid state given by (17). It decomposes as follows 
into definite-pointer-position hybrid states M'" (of the form (20) mutatis mutandis): 

M =E whMik'.  (21) 
k 

Here wk and also the pih' appearing in the M") states (when wk > 0) are taken from 
the explicit form (17) of M .  Decomposition (21) is unique. 

Proof: The validity of (21) is a straightforward consequence of the way in which one 
evaluates a convex or a u-convex combination in the set of all hybrid states dQ (see 
(18a) and (18b)). As to the claim of uniqueness, let us assume that there exists another 
decomposition: 

M = E  u ~ M ' ' ~ )  
k 

where 

V k :  uk *O, E uk = 1 
h 

and 

Vk, lJh > 0: M'(k)=  { ( 6 k ' , h P ; ' h ' ,  a h ' , , )  : v k ' )  

with some statistical operators pl(*' .  Then the rules (180) and (18b) imply 

M = { ( p i ( k J ,  u k ) :  V k }  
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where, for the k values for which U ,  = 0, by definition 0. However M is uniquely 
determined in terms of the entities on the right-hand side of (17), that is a difference 
in any of these entities gives a distinct hybrid state. Hence, 

V k :  uk = wk 

and 

The key decomposition (21) can be derived in terms of Jauch’s classes of statistical 
operators P , ~ .  Actually, it has been obtained in this way by Jauch (1964, 1968) and 
by the author (extension and modification of Jauch’s theory in Herbut 1986a). 

In section 8 we discuss to what extent decomposition (21) answers the need for 
objectification of measurement. 

iik + oJp;l*) = 

I. The pointer observable as a beable 

In this section we explore another way towards objectification by assuming that QM 

gives an incompieie siatisiicai descripiion of individuai quantum systems. ivioreover, 
we stipulate that the pointer observable (1 0 B 2 )  of the composite quantum-object-plus- 
M I  system is a beable. 

In order t o  put the latter assumption in sufficient detail and with sufficient precision, 
we assume that we have an arbitrary quantum state P , ~  represented empirically by a 
laboratory ensemble of N composite systems. Then, to begin with, our beable stipula- 
tion has the following two aspects. 

(i)  In its individual-system aspect it reads that each of the N individual composite 
systems has a definite pointer position b, prior to the measurement of any composite- 
system observable C,2. 

(ii) In the ensemble aspect it is assumed that ( C ,  nf(Bz)) E O,, (cf (12)) is measured 
in P , ~ ,  and that Hk is the number of systems that had bk prior to the measurement 
and gave the ‘wrong’ resuit (c,,,f(b,,)j, i c ’ i  k, in the measurement. Tien it is stipuiaied 
that 

that is that the measurement ‘reads off the prior-to-measurement value b, of the beable 
(lOB,),  that is it finds the ’right’ result, with statistical certainty. By this the most that 
depends on the choice of the object-observable C ,  and on its obtained value c, is the 
choice of the individual systems on which the value b, of the beable fails to be 
communicated correctly to the M I  that measures ( C ,  nf(B,)), (&R, is the negligible 
number of such systems). 

One should note that the second requirement implies partial locality of B2:  with 
statistical certainty, the pointer positions bk found on the individual systems do not 
depend on the choice of C, in the measurement of (C,  A B2) .  This is an important 
point regarding so-called contextuality in the hidden-variable theories that exist in the 
literature (Shimmy 1984, Djurdjevik et a1 1990). 

Besides these requirements, we have to reconcile the distribution of the b, values 
over the N systems with the statistical prediction implied by pI2:  
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(iii) Let Nk be the number of systems that have the pointer position bk prior to 
measurement. Then, on account of (i) ,  L,N, = N, and we require 

V k :  lim N k / N  = wk =Tr12 p I 2 ( 1 @ Q $ ' ) )  
N-m 

where Qyl is the characteristic projector of the pointer observable B2 corresponding 
to the pointer position b,. 

Kow, iet us reiaie our beabie approach to the idea of coliapse (on which objec- 
tification rests). Let N ;  be the number of systems in the laboratory ensemble at issue 
that produce the result (c", b,) with arbitrary c, but fixed bk in the measurement of 
the given observable (C, A B2) (no matter if b, is 'right' or 'wrong'). Let &': be the 
number of those among them that had b,., k '#  k, prior to the measurement, that is 
that gave a 'wrong' result. Finally, let Nk be the number ofthose among the Nk systems 
that bad b, prior to measurement (cf (iii)), that also give a 'wrong' result (c,,, bk.), 
k ' #  k. Then 

(both sides give the number of systems that had bk before the measurement and gave 
the 'right' result). Since N;SZwi%P Nk, we have 

(cf (ii)). Hence, it follows from (22) that 

I . . . / \  
(C1 (1111). 

of this section. 

Theorem 2. Let p,2 be an arbitrary statistical operator describing the quantum state 
of a composite (quantum-object-plus-MI) system. We assume that a concrete laboratory 

p,, .  For each k, Nk of the systems have bk of B, prior to measurement (cf (i) and 
(iii)). The state represented empirically by the corresponding subensemble will be 
denoted by &I. (We refer to it as a 'substate' of P , ~ .  If it is not a statistical operator, 
we call it a non-quantum mechanical state.) 

Let C, be an arbitrary quantum-object observable that has a purely discrete spec- 
trum. Then, for the measurement of (c, A B2)  we have the following statistical pre- 
diction: 

Now we are prepared t o  give precise formulation of and to prove the basic result 

".."..-L,- ^P h, "̂ -̂ "̂:+a "..".*..." :" ";..e.. tL"* ":..a" ".. a.....:-:,.", ~~..~~"~",.,,;.... ,.E 
C I I J G I I I V I C  U1 '. C u m y U J ' L c  JyJLCuL" 1D S " ' L 1  LLLLLL EL'S" 0 1 1  L,,1y,.lba, ,Cp,CaC"LYL1Y,. "L 

where the average is denoted by (. . .)&I in the mentioned definite-bk substate p%),  the 
collapsed state pi" is given by (16). and the hybrid state M'" is defined by (20) (with 

Thus, theorem 2 establishes that the non-quantum mechanical definite-bk substates 
of p I Z  are actually correctly described by M"', the definite b, substates of the hybrid 
state M that corresponds to p l z  (cf (201, (21) and (17) with (16) and (15)). At least 
this is true as  far as the coincidence observables (C, A 8,) that is the instrument version 
of macroscopic complementarity, is concerned. Further, let us note that, as is easily 

ifi$t& of p , ) .  
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seen, if and only if [pI2. (10Q$”)] =0, the substate Pi:) is a statistical operator. It is 
then of the form (cf (30) below): 

6%’ = ( 1 0  QIt))~~~/Tr12(10Q!l’))p12. 

In this case ( 2 5 )  is trivially seen to be valid. 

Proofoftheorem 2. To begin with, we restrict ourselves to bounded C , .  For a fixed k 
value, let i = 1 , 2 , ,  . . , N k ,  enumerate in some arbitrary fixed order the individual 
composite systems in the definite-b, subensemble prior to the measurement of (C,A 
B J E  0,2, Then, after the measurement, 

where (c ; ,  b,.) is the result of the measurement on the ith composite system (with 
b,, = bk or b,. # b, though all Nk systems had bk before the measurement). 

We have to go over to the observed relative frequency when (C, A B2)  is measured. 
Hence, we must take into account the possible ‘wrong’ results of bk. 

Let j enumerate (in some arbitrary but fixed order) the values of C, when the 
measurement of (C, A B2) gives ( c j ,  b,), We have (in the notation used above): 

N; ( N k - e k )  N; 
1 cj= 1 C l +  1 cm 

j = ,  I = ,  m = ,  

where I enumerates the ’right’ results b, among the Nk observed ones, m enumerates 
the ‘wrong’ ones among them, and (22) has been utilized. On the other hand, 

where n enumerates those of the definite-b, systems (prior to measurement) that give 
a ‘wrong’ result: by,  k ‘#k  Altogether, 

Denoting by IC,I the norm of the bounded operator C,, we have further: 

In view of (23), that is on account of the fact that the ‘wrong’ results occur, by 
stipulation, on a negligible subset of systems, it follows that 

Taking into account (24), (27) and (28), and the fact that w;’=limN,, N / N , ,  we 
transform (26) as follows. 
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The last step is due to the fact that one has cjSk,,k as the result for (C,OQI”’) when 
one obtains (c,, bk.) in the measurement of (C, n B2) on the entire quantum ensemble 
that empirically represents P , ~ ,  

Finally, 

(C,01)pi5i=Tr, C l p i k )  

in view of (16). This further equals (C,Ol),r*i due to (19) and 1 =ZkQ$*).  
This proof covers all cases when C ,  is a projector (quantum event). For any more 

general observable C, (bounded or unbounded) with a purely discrete spectrum (a 
more general C,  cannot be exactly measured) the average values are linear combinations 
of the average values of the characteristic projectors with the corresponding characteris- 
tic values as the coefficients (with series instead of sums if the spectrum is infinite). 

U 

In theorem 2 we have made use of the extended set s,, of states that comprises 
besides all the quantum mechanical states p,2 also all non-quantum mechanical defiuite- 
bk substates &) of the quantum mechanical states P , ~ .  In all the states of gl2 the 
expectation value of any observable (C,O@’) from 0:: (given by (14)) is defined. 
Hence, the equivalence relation due to restriction to 0:: (that was in SI, defined by 
(13)) can be extended to s,2. 
Theorem 3. Let &’ be a definite-b, non-quantum mechanical substate of a quantum 
mechanical state p l Z .  One has 

(29) 

for every Hermitian operator C,  with a purely discrete spectrum and for every value 
of k’ and k Here pi:’ is by definition the so-called Liiders (1951) projection of p,, (cf 
Messiah 1961): 

(30) 

Hence, (25) generalizes to any C ,  of interest. 

(C,  0 Q$k’’)D;y = (Cl 0 Qiw))o\$) 

,,I*) 1 2  = - ( 1 0  QI*’)piz(lOQ1X’)/Tri2(10 Q: ’ ) )P>~ .  

(Note that the existence of &’ requires that wk  TI,^(^ 0 Q:*’)p1,> 0.) 

Hence, s,2/ - and S,2/ - are naturally isomorphic. Actually, they differ only in the 
fact that some classes (elements) of the former quotient set contain besides quantum 
mechanical also non-quantum mechanical states. 

Proof: As evident from the definition (26) and ( 2 5 ) ,  we have 

(C,0Q2 I*’) )6\y = Sw,k(C,Ol)p!y = Tr, p!* ’C, .  

On account of (30), we further have 

= B p , k W ; ‘  Tr,,(C,O Q i k ’ ) p i z  = 6w.k  Tr,,(C, 0 l)P\;’. 

The rest of the claims follow in a straightforward way. U 

8. Concluding remarks 

We now give a critical discussion of the sense in which and the degree to which the 
objectification problem of quantum measurement theory has been solved in this paper. 
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As stated in the introduction, attributing physical meaning to some basic quantum 
mechanical concepts cannot, as a rule, be separated from taking a stand in the 
positivist-realist controversy (overlap with philosophy). Therefore, our discussion will 
also be given from this standpoint. 

In sections 2-6 the criterion of relevance of a composite-system observable was 
given by restriction to O, ,  (defined by (12)) or rather by 0:: (given by (14)). The first 
requirement of objectification (see the introduction) is now satisfied by decomposition 

states M"'. One should note that M is the statistical state of the composite system in 
the instrument version. It corresponds to (4)12(41,2 that, in turn, describes the same 
final premeasurement state in the object version. 

The mechanism of the collapse M + M"' is furnished by the subsequent measure- 
ment of the pointer observable. Thus, the second requirement of objectification is also 
satisfied. Unfortunately, this argument is, at best, acceptable only to the broader-minded 
positivist (cf the introduction). 

The realist's difficulties with this objectification argument are numerous. However 
one of them seems to be the most significant: It has been shown in the literature (Furry 
1936, Moldauer 1972) that among the left-out observables (that is among those that 
do not belong to OJ the doubly incompatible ones are the most important. They are 
of the form ( C ,  A C,)  (cf section 4), where both 

(2:). :i &jp:aYj :he hybrid Si& !"f as a , Z i X ; u i Z  of defiiiiiz-poiniei-podiioii hybrid 

[Ci, Ai1 # 0 and Cc,,B,lfO 
are valid ( A ,  being the observable measured in the first place, and E ,  being the pointer 
observable). Subsequent measurement of doubly incompatible observables (on the 
final premeasurement state) may distinguish between the coherent state 14),2($1,2 
given by 

\+)12=x w ; ' 2 1 + ( k ) ) i i  (31) 
L 

(cf (9)) and the corresponding (incoherent) mixture 

P12-x w k l + ' k ' ) 1 2 ( 4 ' k ' 1 1 2 .  (32) 

The states 1 ~ $ ) , ~ ( + 1 , ~  and p,2  given by (32) belong to the same Jauch class, that is 
the corresponding hybrid state M is one and the same. But they differ by the interference 
of the terms, that shows up experimentally precisely in the measurement of some 
doubly-incompatible observables ( C ,  A C2). 

To the realist all that is potentially detectable (and possibly more than that) refers 
to aspects of reality. He cannot accept the claimed physical relevance of decomposition 
(21) unless satisfactory explanation is given about the doubly incompatible coincidence 
observables. The arbitrary, anthropocentric restriction to O, ,  will not do  for him. 

As a partiai answer to this diiiicuiiy, ihe mentioned decomposition (iij is repiaced 
by 

1 4 ) 1 2 ( 4 1 1 2 = 1  WkP',:' (33) 
k 

in the extended set s,, of statistical states (the first requirement of objectification). 
Now the pointer positions are assumed to have definite values for the individual ,, T',->yS,=',,> 111 D p L G  "L LLlC Idc., L L l ' l l  ,q,,,2,c+l,2 1 U y " P . L L U . l .  ."CC1'P.""U..J .. "..."a-..-""- 
(it is such in S,, but not in S,,) ,  and in spite of the fact that it contains the mentioned 
interference as part of reality, Decomposition (33) has been shown (in theorem 3)  to 
be meaningful with respect to the observables from Or2 (given by  (14)). 

i i  L 1\ . - - - : - - - : . - - ~ . ~ - ~ - - ~ * ~ - ~ l A \  / A I  :rn.."-t..mmrrhl.nirnll..hnmno~n~mi~ 
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The way in which the pointer observable is imagined as a beable suggests that (33) 
should hold also regarding the doubly incompatible observables. But this is only a 
conjecture. It has not been proved in this paper. 

The point to notice is that the terms pi:' in (33) will, no doubt, give diferent 
statistical prediction for the doubly incompatible observables (if they give any) than 
the quantum mechanical states l $ ( k ' ) , 2 ( + ' k ' l , 2 ,  that are fictitious or 'ghost' states from 
the point of view of Namely. the ld,(k')!2 states appear in the M'*' hybrid states 
(cf theorem l ) ,  but they are substates only in p,* given by (32), and not in The 
statistical state that corresponds in the object version to M is not pI2;  it is I $ ) , 2 ( + 1 1 2 .  

One can understand how inteference and sharp pointer positions in the states 
I $ ) l 2 -  M (having the two versions in mind) can both be real for the same individual 
systems: what interfere are the 'ghost' states l + ' k ' ) , 2 ( + ( k ) l 1 2 ,  and the real states pi:' do 
no1 inrerfere. 

As to the second requirement of objectification, the transition 1 $ ) 1 2 ( + 1 1 2 +  6:;) is 
due to the very beable property of E , .  But this is only the formal part of the answer. 
Essentially, the beable approach envisages a subquantum stochastic mechanism for 
the change from the initial pointer position bo to b,, the final one (see Bell 1987). 

Acknowledgments 

In an early stage of work on the theory expounded, I benefited much from discussions 
with V PankoviC. My special thanks are due also to Zeh, Shimony, D'Espagnat and 
Selleri, who took the trouble to respond to a preliminary version of this work. Their 
comments have proved invaluable. But most of all I am indebted to M VujiCiC, without 
Whose critical remarks !his paper C O U ! ~  net hive !&en B deccnt shape. Eo-were:, 
needless to say, for the remaining shortcomings I am the only one to blame. Finally, 
I want to acknowledge the financial aid of the Serbian Fund for Science and the 
Serbian Academy of Sciences and Arts. 

References 

Bell J S 1987 Speakable and Unspeakable in Qunntum Mechanics (Cambridge: Cambridge University Press) 

Beltrametti E G ,  Caasinelli G and Lahti P J 1990 J.  Math. Phys. 31 91 
Bohr N 1961 Atomic Physics and Human Knowledge (New York: Science Editions) 
Busch P 1991 Symposium on the Foundations of Modern Physics, Joenruu, 1990 (Singapore: World Scientific) 
DEspagnat B 1976 Conceptual Foundations of Quantum Mechanics 2nd edn (Reading, MA: Benjamin) ch 

DjurdjeviC M, VujifiC M and Herbul F 1990 Symplectic hidden variables theories-the missing link in 

Fine A 1970 Ph,,s. Rev. D 2 2783 
Furry W H 1936 Phys. Re". 49 393 
Ghirardi G C ,  Rimini A and Weber T 1986 P h p .  Rev. D 34 470 
Herbut F 198ba Int .  J .  7hhpor. Phys. 25 863 

- 1991 Symposium on the Foundations of Modern Phpic.7, bensuu,  1990 (Singapore: World Scientific) 
Jauch J M 1964 Helu. Phys. Acto 37 293 
- 1968 Foundations of Quantum Mechanics (London: Addison-Wesley) 
Joos E and Zeh H D 1985 2. Phys. 59 223 
Lllders G 1951 Ann. Phys. 8 322 
Messiah A 1961 Quantum Meehonies "01 I (Amsterdam: Nonh-Holland) p 333 

p 173 (also in PhyT. Rep. 137 49 (1986)) 

7.2 

algebraic  ont textual approaches Preprint Faculty or Physics, University of Belgrade 

l " P L L  I".  I 7%"". DL.." ,= S l l C  - ll"y" ,,<.. ,. ,llc",. ".,"'. &., ,&,, 



1800 F Herbut 

Miiielstaedi P 1991 Symposium on the Foundations of Modern Physics, Joensuu, 1990 (Singapore: World 

Moldauer P A 1972 Phys. Re”. D 5 1028 
Primas H 1983 Quantum Mechanics and Chemistry Les fondementr de la mgcanique quonrique ed Ch Gruber, 

Shimmy A 1963 Am. J. Phys. 31 755 
- 1984 Brit. J.  Phil. Sei. 35 25 
Siapp H P 1972 Am. J.  Phys. 40 1098 
Sudbery A 1986 Quantum Mechanics and rhe Parricler of Nolure (Cambridge: Cambridge University Press) 

yon Neumann J 1955 Morhematicol Foundations of Quantum Mechanics (Princeton: Princeton University 

Vujieic M and Herbut F 1988 J. Phys. A: Marh. Gen. 21 2931 
Zurek W H 1982 Phys. Rev. D 26 1862 

Scieniific) 

C Piron, T-M Tam and R Weill (Lausanne: AVCP) pp256-70 

ch 5.5 

Press) 


